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ABSTRACT:
The recovery of the properties or geometry of a rough surface from scattered sound is of interest in many

applications, including medicine, water engineering, or structural health monitoring. Existing approaches to

reconstruct the roughness profile of a scattering surface based on wave scattering have no intrinsic way of predicting

the uncertainty of the reconstruction. In an attempt to recover this uncertainty, a Bayesian framework, and more

explicitly, an adaptive Metropolis scheme, is used to infer the properties of a rough surface, parameterised as a

superposition of sinusoidal components. The Kirchhoff approximation is used in the present work as the underlying

model of wave scattering, and is constrained by the assumption of surface smoothness. This implies a validity region

in the parameter space, which is incorporated in the Bayesian formulation, making the resulting method physics

informed compared to data-based approaches. For a three-parameter sinusoidal surface and a rough surface with a

random roughness profile, physical experiments were conducted to collect scattered field data. The models were then

tested on the experimental data. The recovery offers insight of the Bayesian approach results expressed in terms of

confidence intervals, and could be used as a method to identify uncertainty.
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I. INTRODUCTION

Non-intrusive acoustic inversion to recover the eleva-

tion or other properties of rough surfaces is an active

research field,1–4 especially in the setting of river monitor-

ing, where intrusive sensors could change the properties of

the flow significantly. A numerical method based on the

boundary integral equations and Kirchhoff approximation to

reconstruct the shape of a scattering surface was outlined in

Krynkin et al.5 and Krynkin et al.6 The Kirchhoff approxi-

mation is widely used in acoustic reconstruction (see, for

example, Joslyn and Dowling7) Other methods have risen in

inverse scattering, especially in the near-field, such as recov-

ering the scattering coefficients.8,9 The Kirchhoff approxi-

mation approach was found to be highly sensitive to

uncertainties, partly because of the strong dependence on

the phase of the scattered signal.10 The review by Ogilvy11

of methods resolving wave scattering by rough surface

highlighted the issue due to shadowing effects at low graz-

ing angles. The work in this paper and the geometry of the

experiment ensures that angles are not grazing and the errors

in the inversion results were associated with the underdeter-

mined and ill-posed nature of the problem.10 The range of

applicability in reconstructing a surface is also limited by

the validity of a partial linearisation of the scattering prob-

lem, which is required in order to make the numerical inver-

sion feasible. The method proposed in Krynkin et al.5 was

expanded to a multiple frequency approach in Dolcetti

et al.,10 and a machine learning approach utilising random

forests in Johnson et al.12 Although the performance of

these methods has been promising, the statistical measure of

the uncertainty is an open question.

Bianco et al.13 presented machine learning in the context

of acoustics, with key examples, such as source localisation.

Similarly, Andrieu et al.14 introduced Markov–Chain

Monte–Carlo (MCMC) methods, providing key theoretical

understanding and algorithms for many methods, including

Metropolis–Hastings (MH) and Sequential Monte–Carlo.

Bayesian methods have recently gained popularity in
the field of acoustics, with applications such as recovering
parameters from the seafloor using acoustic backscatter-
ing,15 estimation of rough surface elevation using a
Bayesian compressive sensing,16 and for acoustic hologra-
phy.17,18 Li et al.19 applied a MH MCMC scheme to recon-
struct the locations and intensities of acoustic sources from
near-field and far-field data.

Application of a Bayesian approach for acoustic scatter-

ing with phaseless data was proposed by Yang et al.20,21 Ina)Email: a.krynkin@sheffield.ac.uk
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Yang et al.,20 the location and shape of a sound-soft scat-

terer were reconstructed. The approach was tested on

shapes, such as kites, disks, and line cracks, with favourable

results, noting that the number of parameters being recov-

ered from the MCMC algorithm was no larger than 6. In

Yang et al.,21 the method was extended to use a Gibbs sam-

pling method in order to recover more parameters, with

phaseless data and a point source excitation. Palafox et al.22

also used a Bayesian formulation in order to reconstruct the

shape of a kite, through a reduction of the problem by a

Fourier-based representation using a t-walk.23 The effective

dimension method was presented where, given a parametric

representation of the solution of the inverse problem, the

normalising constant can be approximated. Bayesian meth-

ods have also been applied in inverse problems in other

fields, such as for seismic waveform inversion,24 and auto-

matic motion analysis in tagged magnetic resonance imag-

ing scans.25,26

Application of the adaptive MH scheme in relation to

acoustical inverse problems has been presented by Niskanen

et al.,27 where the Johnson–Champoux–Allard–Lafarge

model was used in conjunction with a MH algorithm in

order to recover the model parameters of a homogeneous

rigid frame porous media. The joint probability densities

verified that the least squares solution was close to the maxi-

mum a posteriori estimation from the MCMC method.

Konarski et al.28 used a similar method, to recover proper-

ties from aluminium foams.

The goal of the work is to recover the shape of a rough

surface from scattered field. This work shows an application

of surface roughness reconstruction based on scattered

monochromatic sound recorded with an array of micro-

phones in the far field. The approach incorporates the

Kirchhoff approximation into a Bayesian viewpoint, allow-

ing for well-developed sampling schemes, such as the

Adaptive Metropolis29 algorithm to be used to infer the

uncertainties of the recovery. The approach is derived and

illustrated considering only the magnitude of the scattered

field (phaseless data). While the phase distribution is also

sensitive to the surface shape, accurate microphone phase

calibration can be challenging, especially at high frequen-

cies, and unwrapping issues can lead to multivariate error

distributions and lack of robustness of the reconstruction.10

Phaseless data, in turn, are more easily implemented in a

Bayesian framework, and can be easier to measure in some

applications. Further, the rough surface is parameterised

into a sum of sinusoidal functions, thus potentially reducing

the number of parameters to recover, as well as allowing

the use of the validity criterion of the Kirchhoff approxima-

tion as a constraint. A three-parameter sinusoidal surface

presented in Johnson et al.12 is used for verification, as well

as a random Gaussian elevation profile used in Dolcetti

et al.10 The Gaussian elevation profile is parameterised from

a specific Fourier decomposition, where the unknowns of

the problem are the amplitude and phase of a number of

sinusoidal surface components over a fixed wavelength

range.

The paper is organised in the following way: Sec. II

presents the parameterisation method of rough surfaces and

the theory for the Kirchhoff approximation. Section III pro-

poses a formulation within the Bayesian framework, the MH

algorithm, and the approximation for the prior with three-

parameter surfaces. Section IV presents an acoustic experi-

ment for the three-parameter and the recovery of a

40-parameter rough surface. Section V presents the results

for the recovery of the three-parameter surface, and random

40-parameter rough surface with a flat surface as an initial

condition. This is followed by discussions on efficiency of

the inversion algorithm. Section VI concludes the report.

II. FORWARD MODEL OF ACOUSTIC SCATTERING

The work in this paper in concerned with estimating

roughness parameters given scattered acoustic data. This

scattered acoustic data will be used as input to the model

described in Sec. III A. The outputs to the model will be

roughness parameters relating to the amplitude, wavelength,

and phase of various harmonic components. This approxi-

mation is done to reduce the number of parameters needed

to infer and approximate the shape of the surface of interest.

Defining N harmonics of the surface through parameters

h ¼ fhjj j ¼ 1;…; 3Ng, a surface profile can be expressed as

fðx; hÞ ¼
XðN�1Þ

i¼0

h3iþ1 cos
2px

h3iþ2

þ h3iþ3

� �
; (1)

where the triplet ðh3iþ1; h3iþ2; h3iþ3Þ represents the ampli-

tude, wavelength, and phase of the i-th harmonic. The

approach was tested on two types of rough surfaces, which

are fully described by a different number of parameters: a

sinusoidal surface (three parameters) and a random surface

(40 parameters). The acoustic signal was recorded at a set of

M microphones with coordinates of the j-th microphone

given by RðjÞ ¼ fðxðjÞ2 ; y
ðjÞ
2 Þj j ¼ 1;…;M}.

The Kirchhoff approximation was chosen due to its

ability to represent the scattered field in an explicit form,

obtained with the assumption based on reflections from a

tangent plane. This closed form enables fast calculations, as

opposed to the full boundary integral equation solution, for

instance. The suitability of this approximation for the condi-

tions analysed in this paper was presented in Krynkin et al.5

and Krynkin et al.6 The problem is stated in two-

dimensional Oxy semi-infinite domain and for time har-

monic dependence expð�ixtÞ.
The domain is bounded by the rough surface fðx; hÞ

defined with Eq. (1). The surface fðx; hÞ satisfies the

Kirchhoff approximation condition given by Thorsos,30

sinð/ðxÞÞ > 1

ðkhðxÞÞ1=3
; (2)

where h(x) is the radius of curvature of the surface, k is the

acoustic wavenumber, and /ðxÞ is the angle of incidence of

the acoustic wave relative to the horizontal axis. Assuming
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separation of variables, with the condition (2) satisfied and

for a source with a given directivity pattern at a given point

on the surface Aðx; fðx; hÞÞ, the scattered field ws in the fre-

quency domain can be expressed in the following equation:6

wsðR;hÞ ¼
1

2kpi

ð1
�1

Aðx; fðx; hÞffiffiffiffiffiffiffiffiffiffi
R1R2

p

� exp ikðR1 þ R2Þð Þðqy � qxcÞ dx; (3)

where, as shown in Fig. 1, the values R1 and R2 are the

Euclidean distances from the source at (x1, y1) and receiver

at (x2, y2) to a given point ðx; fðx; hÞÞ on the surface,

respectively,

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � xÞ2 þ ðy1 � fðx; hÞÞ2

q
; (4)

R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � xÞ2 þ ðy2 � fðx; hÞÞ2

q
: (5)

In Eq. (3), R ¼ ðx2; y2Þ; c ¼ dfðx; hÞ=dx; qx and qy are the x
and y components of q ¼ �krSðR1 þ R2Þ; rS ¼ ð@=@x;
@=@yÞ. The directivity term A(x) is defined in this work as

the far-field radiation from a baffled piston, which is given

by31

AðxÞ ¼ 2J1ðka sinð/ðxÞ þ /0ÞÞ
ka sinð/ðxÞ þ /0Þ

; (6)

where a is the aperture (approximated experimentally as

0.018), J1ð�Þ is the Bessel function of the first kind, /0 is the

angle of inclination of the source main axis to the Ox-axis,

and /ðxÞ is the angle between the vector defined by the loca-

tion of the source and a point x on the projected line with a

unit vector parallel to the Oy-axis. It is noted that the use of

the baffled piston directivity pattern originally derived for

three-dimensional problems is used in this study to relate

the predictions with data collection method introduced in

Sec. IV. This includes parameterisation of the source (i.e.,

true radius of the source aperture) and resulting width of the

acoustic incident wave.

Following the application of the Kirchhoff approxi-

mation to simulate the scattered field, the phase is

removed from Eq. (3) through the application of the

modulus

pðR; hÞ ¼ jwsðR; hÞj: (7)

Taking into account the receiver locations in an array of M
receivers, phase-removed scattered field is given by the fol-

lowing matrix:

pðhÞ ¼ fp RðjÞ; h
� �

j j ¼ 1;…;Mg; (8)

where the matrix is formed from pðRðjÞ; hÞ (an ensemble

containing the array of magnitudes of the scattered field for

a given surface profile f) with RðjÞ forming an array of

receiver locations defined with respect to the origin of the

Oxy plane.

The Kirchhoff approximation model is deterministic;

therefore, one set of surface parameters maps to a given

scattered field. However, in practical applications, noise and

modelling errors are present. It is proposed to modify the

solution of the Kirchhoff approximation via additive noise,

calculated as

~pðhÞ ¼ pðhÞ þ �; (9)

where � ¼ �jj j ¼ 1;…;M; with �j � Nð0; rÞ represents

deviation from the Kirchhoff model via environmental noise

and modelling errors. It is drawn from a normal distribution

independently for each receiver with mean 0 and standard

deviation r.

III. INVERSE PROBLEM

A. Bayesian framework

One approach to Eq. (9) is to treat the overall equation

in the perspective of probability. As � is drawn from a prob-

ability distribution, Eq. (9) motivates the application of

Bayes’s theorem:32

Pðhj~pÞ / Pð~pjhÞPðhÞ: (10)

The left-hand side is referred to as the posterior distribution

and allows for distributions to be taken over parameters h
given a measurement ~p; Pð~pjhÞ is called the likelihood

function, which is the probability of the observed acoustic

scattered field given the model parameters, and PðhÞ is

called the prior distribution and encompasses prior belief on

the distribution of parameters. In the present paper, the prior

distribution is defined from the Kirchhoff approximation

condition, as detailed further below.

With the Gaussian noise in the observation model

[Eq. 9)], the likelihood Pð~pjhÞ can be written as

Pð~pjhÞ ¼ fMNð~p; h;RÞ (11)

with

FIG. 1. (Color online) The geometry of the problem where the rough sur-

face is defined by a function fðxÞ from Eq. (1). Surface is not to scale. On

the top right of the image, there is a pictorial representation of the linear

array of microphones which could be at a different height y2 than the height

of the source y1.
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fMNð~p; h;RÞ ¼
exp � ~p � pðhÞ½ �TR�1 ~p � pðhÞ½ �=2

n o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞkjRj

q ;

(12)

where fMN is a multivariate Gaussian probability density func-

tion and R is the covariance matrix representing the error �
added to each receiver. In the present work, the error in the

scattered field is assumed uncorrelated across receivers and

therefore the covariance matrix is assumed to be diagonal.

B. Posterior sampling algorithm

In this work, the MH algorithm is used for sampling the

posterior distribution and drawing new potential states from

the state space, where the posterior distribution is obtained

adaptively by updating the proposal distribution to target a spe-

cific acceptance rate.29,33 The proposal distribution determines

the probability of moving the samples in the trace, and the con-

struction is given by Haario et al.29 A key piece of literature in

understanding various MCMC methods, including the method

used in this work, is given in Andrieu and Thoms34 and Kaipio

and Somersalo35 As an initial state, the surface is considered

flat, both in the three-parameter and 40-parameter problems.

For every iteration, a uniform random number between zero

and one is generated in order to randomly accept or reject a

proposed sample. The proposed sample is drawn from the pro-

posal distribution and the posterior distribution calculated. A

ratio (known as the acceptance ratio) is calculated from the

posterior of the proposed sample, divided by the posterior of

the current sample. If the posterior of the proposed sample is

greater than the posterior of the previous sample, then the

acceptance ratio is greater than 1, guaranteeing that the pro-

posed sample is accepted. If the ratio is greater than zero and

less than 1, then the uniformly generated random number is

used to reject or accept the proposed sample. Typically, the

collection of accepted and rejected samples is referred to as the

trace, and the trace tends to settle to the stationary distribution.

Removing that transitional period at the start of the trace is

referred to as removing the “burn-in” period. The reader can

find a more detailed description of the MH algorithm in Kaipio

and Somersalo.35

C. An approximation for three-parameter recovery

For three-parameter recovery, the scattering surface is

fully defined by the surface amplitude, h1; surface wave-

length, h2; and surface phase, h3. The Kirchhoff condition

(2) depends on the acoustic wavelength k. The Kirchhoff

condition for a given source excitation frequency at a given

acoustic wavenumber, surface amplitude, and angle of inci-

dence can be approximated with the following expression:

h2 >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞ2

k sin3ð/Þ
jh1j

s
¼ b: (13)

The surface amplitudes h1 is further restricted by con-

straining the maximum surface amplitude to be ys � 3k as a

bound to guarantee that scattered field will be given at the

far-field. Assuming a maximum allowed wavelength value

h2;max, this gives a closed interval of surface parameters that

satisfy the Kirchhoff criteria in amplitude-wavelength space,

allowing for a prior (assuming uniform prior)

PðhÞ ¼ f ðh1; h2ÞUð0; 2pÞ; (14)

where U is the uniform distribution for the phase h3 between

0 and 2p, and f ðh1; h2Þ is the conditional uniform distribu-

tion of h1 and h2 over the domain of Kirchhoff criteria satis-

faction given by

f ðh1; h2Þ ¼

ðys�3k

�ðys�3kÞ

ðh2;max

b
1 dh2 dh1

" #�1

if jh1j � ys � 3k; b � h2 � h2;max;

0 otherwise:

8>><
>>: (15)

Therefore, for the three-parameter case, the prior can

be evaluated analytically. For higher dimensional cases,

the Kirchhoff condition needs to be evaluated numerically

for every step in the MCMC scheme. In the case of the

40-parameter recovery for this research, the surface is

determined as the sum of 20 sinusoids, each one repre-

sented by three parameters (amplitude, wavelength, and

phase). In this case, the prior on the amplitude and phase

parameters we draw from a uniform distribution. To

ensure that the surface realisations satisfied the

Kirchhoff criterion, the prior was set to zero if the condi-

tion failed.

To measure the accuracy of the recovered surface

parameters, two-surface types were generated from the pre-

diction step. The first type of surface [referred to as fðx; �hÞ]
was found by substituting the mean of the resultant surface

parameters �h obtained from the trace of the MH scheme,

namely the conditional mean. The second kind of surface

[referred to as fðx; hÞ] was found by averaging surfaces gen-

erated by the parameters along the spatial direction.

IV. DATA COLLECTION

In order to validate the surface reconstruction method-

ology, scattered field was recorded by a set of 34 1/4 00
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microphones (G.R.A.S. 40PH) above two acoustically rigid

surfaces with known profiles described in Dolcetti et al.10

A white noise signal was produced with a loudspeaker

(Visaton G 25 FFL) and recorded simultaneously at all

microphones, with a sampling frequency of 102.4 kHz.

Arrangement of both speaker and array of microphones is

identical to that described in Johnson et al.12 The signal

amplitude at each microphone was calculated by a Fourier

transform applied to 0.02 s–long segments of the signal

using a Hann window, and then averaged over 2000 seg-

ments. The data were calibrated in situ by comparing mea-

surements of the sound field reflected by a flat surface with

the corresponding prediction calculated numerically, fol-

lowing the procedure outlined in Dolcetti et al.10 The cali-

brated experimental data and the simulated received

scattered field were then divided by the maximum value of

the simulated absolute scattered field from a flat surface.

This procedure increased the measured response from all

receivers by a scaling factor, which improved convergence

speed in the inversion process. The signals used for the

three-parameter surface had a frequency of 14 kHz (which

corresponds to a minimum kR1 value of 56.12 and mini-

mum kR2 value of 72.58) to compare with the results pre-

sented in Johnson et al.12 The signal used for the 40-

parameter analysis had a frequency of 18.6 kHz (which

corresponds to a minimum kR1 value of 70.03 and mini-

mum kR2 value of 91.92).

One surface profile was milled on the upper face of an

aluminium block with horizontal dimensions 0.55

� 0.35 m2. The profile was sinusoidal along the longer

dimension, with a wavelength of 50 mm and a peak-to-peak

amplitude of 3 mm, and was constant along the shorter

dimension. The second profile was milled onto a block of

medium-density fiberboard (MDF) with dimensions of

0.6� 0.4 m2. This profile was generated via Fourier synthe-

sis,30 i.e., as a random realisation of a surface with discrete

spatial power spectrum WðKiÞ expressed as a function of the

wavenumber Ki ¼ i2p=L, where L is the surface length

fexp ðxÞ ¼
XN=2

i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WðKiÞ

p
Nð0;1Þcos Kix�Uð0;2pÞð Þ; (16)

FIG. 2. Corner plot of the distribution of the traces for the amplitude [h1 (m)], wavelength [h2 (m)], and phase [h3 (rads)] for the three-parameter surface.

The subtitles contain the mean and the 68% credible interval bounds.
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where Nð0; 1Þ indicates a sample from a normal distribution,

and Uð0; 2pÞ indicates a sample from a uniform distribution

in the interval (0; 2pÞ. This representation is directly linked

with the surface parameterisation described by Eq. (1). The

power spectrum is proportional to the squared amplitude of

the i-th surface harmonic with wavelength 2p=Ki. Here,

WðKiÞ was assumed to vary like a power function of the

wavenumber, WðKiÞ / K�a
i , which is representative of natu-

ral surfaces, such as the water surface or the bed surface of

rivers or of the oceans.36–39 Here, the surface had a¼ 5, in

agreement with experimental observations of the water sur-

face of open-channel flows.40 To ensure the integrability of

the spectrum, a saturation range at low wavenumbers Ki

< 2p=0:05 rad m�1 was introduced following Stewart

et al.,39 i.e., WðKi < 2p=0:05Þ ¼ Wð2p=0:05Þ. The spectrum

had a small-scale cutoff at Ki > 2p=0:01 rad m�1. The stan-

dard deviation of the random surface height was equal to

1 mm and the surface satisfied the Kirchhoff condition.

V. RESULTS

A. Three-parameter recovery

For the three-parameter surface, the algorithm ran for

1 00 000 samples. The burn-in period was set at 10 000 sam-

ples, and the covariance matrix was updated every 20 sam-

ples. The values of the standard deviation were set as

r ¼ 0:15�pðRÞ where �pðRÞ is the mean scattered field

received along the linear array according to the simulations

described by Johnson et al.12 for the same geometry and fre-

quency was set to be 15% error of the mean scattered field

from the Kirchhoff approximation of the true surface to

match Table II in Johnson et al.12 The targeted acceptance

ratio was 20%.

Figure 2 presents a corner plot generated with the

method outlined in Foreman–Mackey et al.41 The leading

diagonal contains histograms with a distribution of occur-

rences of each parameter, with the vertical dashed lines

FIG. 4. 1000 random samples of the trace (shaded region), plotted against the real data (dashed line) for the three-parameter surface recovery.

FIG. 3. Surface elevation of the three-

parameter surface. True geometry

(solid line); surface fðx; �hÞ generated

from the conditional mean of MCMC

parameter samples (dashed line); mean

of all surfaces fðx; hÞ obtained from

MCMC parameter samples (dashed-

dotted line); 68% credible interval

(shaded region).
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representing the 68% credible interval (i.e., an interval that

contains 68% of the probability mass: the first vertical line

is the lower bound, the second is the mean, and the third is

the upper bound). The wavelength parameter h2 is highly

accurate, with approximately 1% error from the true wave-

length at the mean of the distribution. The amplitude param-

eter h1 is overestimated by 0.7 mm, and the spread is large.

The scatter plots represent the two-dimensional marginal

probability distributions, which highlights that the variabil-

ity in surface phase has a larger impact on the uncertainty of

the surface amplitude compared to the surface wavelength.

Figure 3 presents the comparison between the surface

obtained from the conditional mean of each parameter in the

trace fðx; �hÞ, the mean of all the surfaces generated from the

distribution of parameters fðx; hÞ, and the 68% credible

interval. fðx; �hÞ and fðx; hÞ were very close to each other in

the region of the most insonified area when x is between 0.1

and 0.3 m. In this region, the recovered surfaces have high-

est accuracy in relation to the original three-parameter sur-

face. Outside this region, the accuracy of the spatial

reconstruction degrades due to the errors in the wavelength.

This behaviour is replicated in the credible interval, where

the shaded region widens further away from the region of

specular reflection of the directivity pattern [Eq. (6)]

mainlobe.

For the case of the mean surface fðx; hÞ, the amplitude

decreases as the x coordinate increases. This is due to the

variation in both amplitude and wavelength.

Figure 4 presents the scattered field from 1000 random

samples from the trace. The peaks in the absolute scattered

field are well mapped (especially around indexes 9, 17, and

18), as the random samples from the trace converge to the

peaks. There is a tendency for the traces to overestimate the

true scattered field, most notable with receivers 2–5 and

25–30. The regions where the absolute scattered field does

not change much, such as in regions between receivers 10

and 15, contain more uncertainty, which can be seen from

the increased variability of the traces. The traces appear to

be less scattered at the tail end of the receivers, but do not

match the experimental scattered field at receivers 25–28.

FIG. 5. (a) Relative root-mean-square

error (RRMSE) of the true surface

against a truncated version of the sur-

face, (b) RRMSE of the acoustic field

amplitude calculated for the true sur-

face and for a truncated version of the

surface defined by the summation of a

smaller number of terms.
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The uncertainty increases around receivers 11–15 and

19–13. This uncertainty provides information that the

receivers in this location contributed less to the scattered

field, and could be used as a method to dynamically reshape

the linear array.

In order to benchmark the performance of this method for

the three-parameter recovery, the results from Johnson et al.12

are used for comparison. With a random forest recovery

trained on the three parameters with 15% additive Gaussian

white noise, the results for the amplitude, wavelength, and off-

set (defined as the phase divided by the wavelength) in

Johnson et al.12) are 0:001 42; 0:0516; and�0:001 94 m.12

The wavelength (�0:0507 m) and offset (��0:000 93 m) for

the proposed method at the mean have improved compared to

those from Johnson et al.12 The error of the mean amplitude

was larger than in Johnson et al.12 Yet, the results from the ran-

dom forest were within the uncertainty bounds calculated with

the method presented here. The further knowledge to be gained

from the uncertainty bounds over the parameters is useful in

showing which parameter causes the most uncertainty, the

amplitude h1.

B. 40-parameter recovery

To further test the adaptive Metropolis scheme, the

scattering of the acoustic signal was studied over the surface

referred to as second surface profile in Sec. IV. For the com-

putation and the prediction of the parameters, this surface

was described in terms of a truncated Fourier spectrum fol-

lowing Eq. (1), where the amplitude and phase of each

Fourier mode represented the unknown parameters and the

wavelengths were fixed and known. To reduce the number

of parameters to recover, the spectrum of the surface was

truncated and rank ordered by the largest wavelength to the

smallest wavelength (see Appendix A). In order to select a

viable reduction of the terms in the summation, the relative

FIG. 6. Comparison of the second rough surface profile against the truncated sum of 20 sinusoidal waves for (a) the surface elevation, (b) the corresponding

Kirchhoff approximation.
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root mean square error (RRMSE) of the reduced surface was

compared to the true surface. Additionally, the RRMSE of

the resultant Kirchhoff approximation scattered field solu-

tion from the reduced surface in comparison to the

Kirchhoff approximation solution using the true surface was

also compared. For both the metrics, a normalisation based

on the standard deviation was applied.

In Fig. 5(a), the results were normalised by the standard

deviation of the full surface, and in Fig. 5(a), the results

were normalised by the standard deviation of the Kirchhoff

approximation solution found from scattering from the full

surface. Both RRMSE exceeds 10% and increases rapidly at

truncations below 20 terms. Therefore, a truncation of 20

terms was selected, which corresponded to recovering 40

parameters. The resulting approximations of the surface and

the Kirchhoff approximation are shown in Fig. 6. The corre-

sponding parameters are contained in Table I and can be

found in Appendix A.

For the 40-parameter case, the Adaptive Metropolis

scheme was used, running for 5 00 000 samples. The error

for the likelihood function was set at 0.1, which relates

approximately to the root-mean-squared error between the

Kirchhoff approximation of the true surface, and the experi-

mental noise (�0:909). This value corresponds to an error

of approximately 17% of the mean scattered field obtained

from the Kirchhoff approximation. The burn-in period was

set at 50 000 samples, and the covariance matrix was

updated every 50 samples. The acceptance rate was reduced

to 10%. The phase parameter in the MCMC was not allowed

to increase more than 2p, and this was achieved by restrict-

ing the value to the region (0; 2pÞ. This causes wrapping of

the phase parameters in the trace. This is accounted for in

the angular mean metric as shown in Appendix B, which is

used throughout this work. It is noted that the periodicity

condition maintains ergodicity of the Markov–Chain and

therefore, the MCMC approach is valid for the phase con-

strained in the region ð0; 2pÞ.14

Due to the substantially increased number of parame-

ters, a corner plot similar to that in Fig. 2 is not shown here.

Similar to the three-parameter surface, the MH scheme was

FIG. 7. Surface elevation of the 40

parameter surface. True geometry

(solid line); surface fðx; �hÞ generated

from the conditional mean of MCMC

parameter samples (dashed line); mean

of all surfaces fðx; hÞ obtained from

MCMC parameter samples (dashed-

dotted line); 68% credible interval

(shaded region).

FIG. 8. Spatial variation of the relative

error for the surface fðx; �hÞ of the

mean of each parameter in the poste-

rior (solid line), and the mean of the

resulting surfaces fðx; hÞ (dashed line),

against the true surface factored by the

standard deviation of the true surface.
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initialised with a flat surface. Figure 7 presents the results

with a 68% credible interval obtained via the highest poste-

rior density interval. The mean predictions closely match

the exact solution from the experiments in the central region

of the directivity pattern defined by Eq. (6) x 2 ½0:1; 0:3�,
then begins to deviate from the true surface outside that

region. The uncertainty from the model is shown in the gray

filled region and represents the solution traces from the 68%

credible interval. The width of the 68% credible interval

decreases for x 2 ½0:1; 0:3�. This is consistent with the

results obtained for the three-parameter surface (see Fig. 3)

and conclusions made for the surface reconstruction interval

in Dolcetti et al.10 The credible interval also highlights that

in the areas outside the central region, the inversion algo-

rithm becomes more uncertain. This is expected as the infor-

mation in the scattered signal is dominated from the high

insonification region.

Figure 8 highlights the absolute error for both the

mean surface predictions (defined as f in the label for

the vertical axis of the graph) compared against the true

surface fðx; hÞ. In the region of high insonification (relat-

ing to x 2 ½0:1; 0:3�), the mean of the surfaces fðx; hÞ is

closer to the true surface than the surface generated by

the mean of the parameters fðx; �hÞ, and the

average error for both predicted mean surfaces is below

1.5 standard deviation of the original ground truth

surface.

Figures 9 and 10 present histograms of the amplitude

parameters of a few surface terms from the traces of

MCMC parameter samples, and elevation of the recon-

structed surfaces evaluated at a discrete set of points (the

two end points, as well as x¼ 0.12 and x¼ 0.3), respec-

tively. Due to the large amount of parameters, a subset was

taken for visualisation. It is also noted that the distribution

of the amplitude parameters becomes uniform as the wave-

length increases, which highlights almost equivalent con-

tribution of the large surface scales within the given range

of the parameters to the scattered acoustic wave. The histo-

grams from the surface elevations (Fig. 10) result in a

Gaussian shape compared to those for the amplitude

parameters.

VI. CONCLUSION

The purpose of the paper was to reconstruct a rough

surface from acoustic scattering and to obtain a measure of

the uncertainty, highlighted in Figs. 7–10. The methodol-

ogy can be used on its own, or as a means to extend non-

stochastic methods, such as previous work by the authors

using random forests.12 In this paper, the MH algorithm

was used in order to treat the set of parameters that form a

parameterisation of the surface elevation function as a pos-

terior distribution. This posterior distribution can then be

queried to get a credible interval, as a measure of uncer-

tainty. The model was tested on two surfaces, a single sinu-

soidal surface parameterised with three parameters, and a

rough surface composed of multiple harmonics dependent

on 40 parameters (amplitudes and phases) and where the

wavelengths were fixed. Laboratory measurements were

taken to acquire the scattered field. The prior was decided

to be uniform, and the Kirchhoff criterion was inserted into

the prior to inform the model of the physics. The results for

the mean surface acquired from the mean of each parame-

ter were highlighted as a model prediction. The mean

FIG. 9. Histograms of the traces (excluding the burn-in period) of the

amplitude parameters defined by Eq. (1) for (a) the first surface term, (b)

the seventh surface term, (c) the ninth surface term, (d) the 14th surface

term.
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surface generated for both the three- and the 40-parameter

surfaces had good agreement, especially in the region of

high insonification, when compared against the ground

truth. The credible intervals highlighted the region where

the model uncertainty is lower. This interval is also

consistent with the underlying physics, as the scattered

field will be most affected by the surface roughness in the

region of high insonification The errors in the predictions

were quantified through the application of the absolute

error factored by the true surface standard deviation, and

this was tested with the two types of mean surfaces that

can be recovered with the proposed method using a param-

eterisation of the surface. The method of obtaining a mean

surface by taking the mean at each spatial point for

x 2 ½0:1; 0:6� for the complete set of surfaces generated

with the distribution of parameters outperformed the

method of taking the mean for each parameter, then gener-

ating one surface, over the majority of the region. The

results showcase the promising aspect of including the

credible interval. Further extensions to this work include

varying the spatial wavelength of the surface. In this work,

the surface wavelengths were fixed due to the assumption

that surfaces were following the Fourier decomposition.

However, these fixed spatial wavelengths could have been

a distribution themselves that removes the need for a prior

assumption on the Fourier decomposition of the surface.

Also, the application of a more accurate optimiser or a

comparison of different optimisers to form an initial guess

on the surface42 could be an extension of an initial surface

condition, allowing for a shrinking or extending of the

credible region. Finally, as the number of parameters that

represent the surface (such as including more terms in the

summation, or directly inferring surface elevations along

the length of the reflecting rough surface) increase, meth-

ods such as Hamiltonian Monte-Carlo43 may provide more

favourable results due to the increase in MCMC search

space.
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FIG. 10. Histograms of the surface elevation from the collection of surfaces

generated from the MCMC traces (excluding the burn-in period) for (a)

x¼ 0 m, (b) x¼ 0.12 m, (c) x¼ 0.3 m, (d) x¼ 0.6 m.
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APPENDIX A: TABLE OF PARAMETERS

Values of the 40-parameter surface [see Eq. (16) for the

definition of the surface and use of the parameters] are

shown in Table I.

APPENDIX B: PHASE AVERAGING

In the calculation of the surface generated from the

mean of the parameters, the average cannot be taken directly

due to wrapping of the phase parameters in the trace. The

angular mean is used for the surface phase parameters, and

is calculated by

�h ¼ tan�1

P
i sin ðhiÞP
i cos ðhiÞ

 !
: (B1)

This calculation takes into account wrapping of the phase in

(0; 2pÞ and should yield an expected average value.
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